print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://flykep.top/topic/food-additive
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: additive

Sucrose, or table sugar, is the standard on which the relative sweetness of all other sweeteners is based. Because sucrose provides energy in the form of carbohydrates, it is considered a nutritive sweetener. Other nutritive sweeteners include glucose, fructose, corn syrup, high-fructose corn syrup, and sugar alcohols (e.g., sorbitol, mannitol, and xylitol).

Efforts to chemically synthesize sweeteners began in the late 1800s with the discovery of saccharin. Since then, a number of synthetic compounds have been developed that provide few or no calories or nutrients in the diet and are called nonnutritive sweeteners. These sweeteners have significantly greater sweetening power than sucrose, and therefore a relatively low concentration may be used in food products. In addition to saccharin, the most commonly used nonnutritive sweeteners are cyclamates, aspartame, and acesulfame K.

The sensation of sweetness is transmitted through specific protein molecules, called receptors, located on the surface of specialized taste cells. All sweeteners function by binding to these receptors on the outside of the cells. The increased sweetness of the nonnutritive sweeteners relative to sucrose may be due to either tighter or longer binding of these synthetic compounds to the receptors.

Nonnutritive sweeteners are primarily used for the production of low-calorie products including baked goods, confectioneries, dairy products, desserts, preserves, soft drinks, and tabletop sweeteners. They are also used as a carbohydrate replacement for persons with diabetes mellitus and in chewing gum and candies to minimize the risk of dental caries (i.e., tooth decay). Unlike nutritive sweeteners, nonnutritive sweeteners do not provide viscosity or texture to products, so bulking agents such as polydextrose are often required for manufacture.

Toxicological testing and health concerns

Food additives and their metabolites are subjected to rigorous toxicological analysis prior to their approval for use in the industry. Feeding studies are carried out using animal species (e.g., rats, mice, dogs) in order to determine the possible acute, short-term, and long-term toxic effects of these chemicals. These studies monitor the effects of the compounds on the behaviour, growth, mortality, blood chemistry, organs, reproduction, offspring, and tumour development in the test animals over a 90-day to two-year period. The lowest level of additive producing no toxicological effects is called the no-effect level (NOEL). The NOEL is generally divided by 100 to determine a maximum acceptable daily intake (ADI).

Toxicological analysis of the nonnutritive sweeteners has produced variable results. High concentrations of saccharin and cyclamates in the diets of rats have been shown to induce the development of bladder tumours in the animals. Because of these results, the use of cyclamates has been banned in several countries, including the United States, and the use of saccharin must include a qualifying statement regarding its potential health risks. However, no evidence of human bladder cancer has been reported with the consumption of these sweeteners. Both aspartame and acesulfame K have been deemed to be relatively safe, with no evidence of carcinogenic potential in animal studies.

P. Michael Davidson