Grading

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://flykep.top/topic/cereal-farming
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Wheat is an important commodity in international commerce, and many attempts have been made to ensure reliability in grading. In North America excellent grading allows the buyer to ascertain the type and standard of wheat acquired. Canada has statutory grades for most of its wheats. For wheat moving overseas from the terminal positions, standard export samples are used in grading. However, there is little commercial grading of wheat in many less-developed countries, and the buyer relies on individual testing and assessments of wheat arrivals.

Storage

Cereal storage has been of concern from the earliest times; references are made to it in the Bible. Harvest variations from season to season produced carryover requiring storage, a problem that grew with increasing populations and developing commerce. With modern international cereal trade, huge silos are now found at the main points of export and at the docks of importing countries. In the major exporting countries silos at the country elevators feed the terminal silos; inefficient storage at any of these points makes the cereals highly vulnerable to insects and rodent attack. In certain regions, such as India, losses have amounted to 40 percent of the crop.

A constant danger also lies in the respiration of the grain. If the moisture content of grain is low (10–12 percent), a rise in temperature resulting from respiration is unlikely; but if the bulk is large and the moisture content high (over 16 percent), the heat may not be dissipated, causing the temperature to rise and further increase the rate of respiration. Consequently, cereal stocks are turned over to ventilate the grain and to keep the temperature low. The problem also occurs in the holds of ships; much litigation has resulted from the arrival of hot and damaged cargoes.

Molds and fungi are other sources of spoilage that have received extensive study in recent years. Cleaning processes remove as much as possible of external molds before storage, but in hot countries, particularly, the problem remains serious. Under primitive conditions the habits and development of communities depended largely on their skill in storing grain.

Heat is also frequently a cause of loss of weight, loss in milling value, and loss in food value through its provision of a favourable environment for such insects as the grain weevil (Sitophilus granarius), the rice and maize weevils (S. oryzae), the lesser grain borer (Rhyzopertha dominica), and the angoumois grain moth (Sitotroga cerealella). These are all endosperm borers. Among the grain germ eaters are the rust-red grain beetle (Cryptolestes ferrugineus), the saw-toothed grain beetle (Oryzaephilus surinamensis), the khapra beetle (Trogoderma granarium), and the warehouse moth (Ephestia elutella).

Secondary pests include the mill pest known as the Mediterranean flour moth (Anagasta kuehniella), the confused flour beetle (Tribolium confusum), the rust-red flour beetle (T. castaneum), the flat grain beetle (Cryptolestes pusillus), the broad-horned flour beetle (Gnathocerus cornutus), the cadelle beetle (Tenebroides mauritanicus), and a number of miscellaneous insects, including the yellow mealworm (Tenebrio molitor), the Australian spider beetle, and the biscuit beetle. Of the mites that invade mills, storehouses and bakeries, the commonest is the flour mite (Acarus siro).

Good housekeeping, with special attention to sacks and bags and their regular cleaning and disinfecting, contributes to insect control. Inert insecticidal dusts, contact insecticides or fumigation may be required.

Douglas W. Kent-Jones The Editors of Encyclopaedia Britannica