bacteriophage Article

bacteriophage summary

verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://flykep.top/summary/bacteriophage
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites
Below is the article summary. For the full article, see bacteriophage.

bacteriophage , or phage, Any of a group of usually complex viruses that infect bacteria. Discovered in the early 20th century, bacteriophages were used to treat human bacterial diseases such as bubonic plague and cholera but were not successful; they were abandoned with the advent of antibiotics in the 1940s. The rise of drug-resistant bacteria in the 1990s focused renewed attention on the therapeutic potential of bacteriophages. Thousands of varieties exist, each of which may infect only one or a few types of bacteria. The core of a bacteriophage’s genetic material may be either DNA or RNA. On infecting a host cell, bacteriophages known as lytic or virulent phages release replicated viral particles by lysing (bursting) the host cell. Other types, known as lysogenic or temperate, integrate their nucleic acid into the host’s chromosome to be replicated during cell division. During this time they are not virulent. The viral genome may later become active, initiating production of viral particles and destruction of the host cell. A.D. Hershey and Martha Chase used a bacteriophage in a famous 1952 experiment that supported the theory that DNA is the genetic material. Because bacteriophage genomes are small and because large quantities can be prepared in the laboratory, they are a favourite research tool of molecular biologists. Studies of phages have helped illuminate genetic recombination, nucleic acid replication, and protein synthesis.