Ion scattering spectroscopy and Rutherford backscattering

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://flykep.top/science/surface-analysis
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

ISS measures the change in kinetic energy of a low-energy primary ion that is scattered elastically from the sample surface. If the ion penetrates below the first atomic layer, the probability of inelastic scattering also becomes high, and, through the resulting multiple collisions, the ion loses a significant fraction of its energy. Thus, ion-scattering spectra usually consist of a series of elastic scattering peaks superimposed on a broad background from the inelastically scattered ions.

The ratio of the energies of the ion before and after scattering is a complex function of both the mass of the incident ion and the mass of the scattering atom on the surface. The function also involves the angle between the initial path of the incident ion and its path upon being scattered.

The tremendous value of ISS lies in its ability to sample the top atomic layer of a surface as opposed to other surface-sensitive techniques, which sample several atomic layers. The energy of the primary ion beam is usually about 1 keV, and the peak locations in a spectrum depend on the specific scattering gas used. Ion-scattering spectra intrinsically contain no chemical information; thus, the technique is used strictly as a qualitative and semiquantitative tool for elemental analysis.

ISS is sensitive to every element heavier than helium, since the lightest isotope used as a primary ion is helium-3 and the scattering element must be heavier than the scattering gas. The specificity, or ability to separate two particular elements, varies depending on the scattering gas used. ISS shows only small variations in signal intensity between elements to which it is most and least sensitive; it is potentially the most universally usable surface technique for qualitative surface work, and its capabilities for quantitative analysis are comparable to those of AES.

ISS has capabilities for surface mapping similar to those of SIMS, although it is not as intrinsically sensitive. Depth profiling can also be done by ISS, particularly down to depths of 10 nm. This is accomplished by allowing the ion beam to sputter successive layers of the surface while obtaining ion-scattering spectra. This takes advantage of the fact that some sputtering always accompanies ISS measurements.

Rutherford backscattering spectroscopy (RBS, named after British physicist Ernest Rutherford) operates on the same principle as ISS. A primary ion beam is elastically scattered, and the energy and angle of the scattered ion yield information about the mass of the scattering atom in the sample. RBS differs from ISS by using a higher-energy primary ion beam, in the MeV range as opposed to the keV range for ISS. The higher-energy RBS ion beam causes it to penetrate farther into the sample, on the order of 1 μm, and also to exit the surface after elastic scattering without having its energy or path significantly altered by atoms in its path. RBS is therefore not an intrinsically surface-sensitive technique, but it can function as one for a surface layer as thin as 3 nm if it exists on the surface of a bulk material and if the signal from the bulk material does not interfere with the signal from the surface layer. (In both ISS and RBS, the sensitivity is proportional to the square of the atomic number.)

RBS also has the unique capability of measuring the thickness of a surface layer up to 50 nm. The ions entering and exiting the sample experience electronic “drag” that slows them down just slightly, which produces a predictable spread of backscattered energies. The peak from the scattered ion beam is commensurately broadened, and the energy spread of the signal can be correlated exactly with the thickness of the sample. This enables RBS to measure absolute depth distributions, something no other technique can do. Ideally, such measurements can be done best for a heavy-atom layer deposited on a light-atom matrix. For the opposite, a light-atom layer on a heavy-atom matrix, the spectrum is more complex and difficult to interpret.

Ancillary techniques

The four major techniques described (AES, XPS, ISS, and RBS) are not the only ones that can be effectively applied to practical surface analysis. Although these represent the four most surface-sensitive techniques because of their limited sampling depths, it is quite feasible to study species on a surface with techniques that are not intrinsically surface sensitive. If, for example, an analysis is being performed for a specific species with a known spectrum on the surface, and the surface signal can be sorted out from the bulk signal, a technique that will detect the species is de facto surface sensitive even if it has penetration depths of 1 μm or more. When it is impossible to analyze a sample under conditions required by the most surface-sensitive techniques, e.g., under a vacuum, the ancillary techniques may offer a feasible alternative.