Muscle types

inmuscle
print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://flykep.top/science/muscle
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Primitive contractile systems

Cilia and flagella

Unicellular organisms such as the paramecium, a protozoan that lives in freshwater ponds and streams, propel themselves by the action of cilia. Cilia occur in large numbers and move in a coordinated way. Ciliated cells within the vertebrate body propel fluid and mucus along interior passages, such as the lining of the respiratory tract.

Flagella are structurally similar to cilia, except that they are longer (sometimes up to 50 times longer) than cilia and usually number only one or two per cell. Sperm cells of most higher organisms move using flagella. Many types of unicellular algae and protozoans use flagella in swimming through water.

Both cilia and flagella contain a regular pattern of tubules extending along their lengths; there is an outer ring of nine pairs of tubules surrounding a central pair of tubules. Each tubule is composed of filaments comprising a string of globular subunits. The movement of a cilium or a flagellum requires energy, which is obtained from the breakdown of adenosine triphosphate (ATP), catalyzed by a protein attached to the outer tubules, dynein.

Some types of bacteria have flagella whose motion seems to depend on a cellular particle called the basal body, to which the flagellum is attached. Such flagella derive their energy from a difference in hydrogen ion concentration across the cell membrane.

Amoeboid motion

Amoeboid movement occurs as an extension of the cytoplasm, called a pseudopod (“false foot”), flows outward, deforms the cell boundary, and is followed by the rest of the cell. Many pseudopodia may be formed at the same time, and their actions do not seem to be coordinated.

Although amoeboid motion is characteristic of the amoeba, a unicellular protozoan, it is also found in nonmuscle cells of multicellular organisms. These cells contain myosin and actin, which differ in some aspects of their structure from the corresponding proteins in muscles because of variations in the genes that encode them.

Striated muscle

Whole muscle

Striated, or striped, muscle constitutes a large fraction of the total body weight in humans. Striated muscle contracts to move limbs and maintain posture. Both ends of most striated muscles articulate the skeleton and thus are often called skeletal muscles. They are attached to the bones by tendons, which have some elasticity provided by the proteins collagen and elastin, the major chemical components of tendons.

Each striated muscle has blood vessels and nerves associated with it. The vessels transport blood to and from the muscle, supplying oxygen and nutrients and removing carbon dioxide and other wastes. The signals that initiate contraction are sent from the central nervous system to the muscle via the motor nerves. Muscles also respond to hormones produced by various endocrine glands; hormones interact with complementary receptors on the surfaces of cells to initiate specific reactions. Each muscle also has important sensory structures called stretch receptors, which monitor the state of the muscle and return the information to the central nervous system. Stretch receptors are sensitive to the velocity of the movement of the muscle and the change in length of the muscle. They complete a feedback system that allows the central nervous system to assess muscular movement and to adjust motor signals in light of the movement.

The muscle fibre

Muscle is composed of many long cylindrical-shaped fibres from 0.02 to 0.08 mm in diameter. In some muscles the fibres run the entire length of the muscle (parallel fibres), up to several tens of centimetres long. In others a tendon extends along each edge, and the fibres run diagonally across the muscle between the tendons (pennate fibres). Considerable variation can be found among the different skeletal muscles, the actual arrangement of the fibres depending on the function of the muscle.

There is a high degree of organization within the fibre, a series of alternately dark and light bands. Each band extends perpendicular to the length of the fibre. Each fibre is surrounded by a complex multilayered structure called the sarcolemma. The outermost layer is a fine network of fibrils, which, at the ends of the muscle, extend into the tendons and form the structural link with them. The next layer of the sarcolemma is a foundation, or basement, membrane. The innermost layer is a plasma membrane similar to the ones that surround most cells. The plasma membrane consists of a lipid bilayer with proteins embedded in it. Some of the proteins are embedded entirely within the lipid layer, others extend to one or the other surface, and still others span the whole width of the two layers. These proteins represent enzymes, receptors, and various channels (such as those involved in the movement of ions between the exterior and interior of the cell). The plasma membrane maintains the electrical potential, which plays a major role in stimulating muscle contraction.

Sarcoplasm is the cytoplasm of a muscle fibre. It is a water solution containing ATP and phosphagens, as well as the enzymes and intermediate and product molecules involved in many metabolic reactions. The most abundant metal in the sarcoplasm is potassium. Sodium and magnesium are present in lower concentrations. Most of the calcium of muscle is bound to proteins or stored in the sarcoplasmic reticulum. Contraction is initiated by the release of calcium ions (Ca2+) upon the depolarization of the membrane, which is induced by nerve impulses.

Each striated muscle cell, or fibre, contains many nuclei. This is the result of the fusion of singly nucleated cells that occurs during the embryological development of striated muscle. After fusion, the cells never again divide.

Mitochondria in the sarcoplasm of the muscle fibre contain the enzymes involved in the Krebs cycle and in oxidative phosphorylation. Granules in the sarcoplasm of muscle cells contain glycogen, the storage form of carbohydrate. The breakdown of glycogen and the metabolism of the individual units of the resulting carbohydrate through glycolysis, the Krebs cycle, and oxidative phosphorylation are important sources of ATP, the immediate source of energy for muscle contraction. Muscles that contain many fibres that operate at a steady, low level of activity are red, due to the presence of cytochromes (molecules involved in oxidative phosphorylation) and myoglobin (an oxygen-carrying molecule in the sarcoplasm). Muscles that work in bursts of activity contain fibres that have fewer mitochondria and fewer molecules of cytochromes or myoglobin, are white, and depend more heavily on reactions that do not require oxygen to make ATP.