Development of radioactive dating methods and their application

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://flykep.top/science/geochronology
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

As has been seen, the geologic time scale is based on stratified rock assemblages that contain a fossil record. For the most part, these fossils allow various forms of information from the rock succession to be viewed in terms of their relative position in the sequence. Approximately the first 87 percent of Earth history occurred before the evolutionary development of shell-bearing organisms. The result of this mineralogic control on the preservability of organic remains in the rock record is that the geologic time scale—essentially a measure of biologic changes through time—takes in only the last 13 percent of Earth history. Although the span of time preceding the Cambrian period—the Precambrian—is nearly devoid of characteristic fossil remains and coincides with some of the primary rocks of certain early workers, it must, nevertheless, be evaluated in its temporal context.

Early attempts at calculating the age of the Earth

Historically, the subdivision of Precambrian rock sequences (and, therefore, Precambrian time) had been accomplished on the basis of structural or lithologic grounds. With only minor indications of fossil occurrence (mainly in the form of algal stromatolites), no effective method of quantifying this loosely constructed chronology existed until the discovery of radioactivity enabled dating procedures to be applied directly to the rocks in question.

The quantification of geologic time remained an elusive matter for most human enquiry into the age of the Earth and its complex physical and biological history. Although Hindu teachings accept a very ancient origin for the Earth, medieval Western concepts of Earth history were based for the most part on a literal interpretation of Old Testament references. Biblical scholars of Renaissance Europe and later considered paternity as a viable method by which the age of the Earth since its creation could be determined. A number of attempts at using the “begat” method of determining the antiquity of an event—essentially counting backward in time through each documented human generation—led to the age of the Earth being calculated at several thousand years. One such attempt was made by Archbishop James Ussher of Ireland, who in 1650 determined that the Creation had occurred during the evening of Oct. 22, 4004 bc. By his analysis of biblical genealogies, the Earth was not even 6,000 years old!

From the time of Hutton’s refinement of uniformitarianism, the principle found wide application in various attempts to calculate the age of the Earth. As previously noted, fundamental to the principle was the premise that various Earth processes of the past operated in much the same way as those processes operate today. The corollary to this was that the rates of the various ancient processes could be considered the same as those of the present day. Therefore, it should be possible to calculate the age of the Earth on the basis of the accumulated record of some process that has occurred at this determinable rate since the Creation.

Many independent estimates of the age of the Earth have been proposed, each made using a different method of analysis. Some such estimates were based on assumptions concerning the rate at which dissolved salts or sediments are carried by rivers, supplied to the world’s oceans, and allowed to accumulate over time. These chemical and physical arguments (or a combination of both) were all flawed to varying degrees because of an incomplete understanding of the processes involved. The notion that all of the salts dissolved in the oceans were the products of leaching from the land was first proposed by the English astronomer and mathematician Edmond Halley in 1691 and restated by the Irish geologist John Joly in 1899. It was assumed that the ocean was a closed system and that the salinity of the oceans was an ever-changing and ever-increasing condition. Based on these calculations, Joly proposed that the Earth had consolidated and that the oceans had been created between 80 and 90 million years ago. The subsequent recognition that the ocean is not closed and that a continual loss of salts occurs due to sedimentation in certain environments severely limited this novel approach.

Equally novel but similarly flawed was the assumption that, if a cumulative measure of all rock successions were compiled and known rates of sediment accumulation were considered, the amount of time elapsed could be calculated. While representing a reasonable approach to the problem, this procedure did not or could not take into account different accumulation rates associated with different environments or the fact that there are many breaks in the stratigraphic record. Even observations made on faunal succession proved that gaps in the record do occur. How long were these gaps? Do they represent periods of nondeposition or periods of deposition followed by periods of erosion? Clearly sufficient variability in a given stratigraphic record exists such that it may be virtually impossible to even come to an approximate estimate of the Earth’s age based on this technique. Nevertheless, many attempts using this approach were made.

William Thomson (later Lord Kelvin) applied his thermodynamic principles to the problems of heat flow, and this had implications for predicting the age of a cooling Sun and of a cooling Earth. From an initial estimate of 100 million years for the development of a solid crust around a molten core proposed in 1862, Thomson subsequently revised his estimate of the age of the Earth downward. Using the same criteria, he concluded in 1899 that the Earth was between 20 and 40 million years old.

Thomson’s calculation was based on the assumption that the substance of the Earth is inert and thus incapable of producing new heat. His estimate came into question after the discovery of naturally occurring radioactivity by the French physicist Henri Becquerel in 1896 and the subsequent recognition by his colleagues, Marie and Pierre Curie, that compounds of radium (which occur in uranium minerals) produce heat. As a result of this and other findings, notably that of Ernest Rutherford (see below), it became apparent that naturally occurring radioactive elements in minerals common in the Earth’s crust are sufficient to account for all observed heat flow. Within a short time another leading British physicist, John William Strutt, concluded that the production of heat in the Earth’s interior was a dynamic process, one in which heat was continuously provided by such materials as uranium. The Earth was, in effect, not cooling.

An absolute age framework for the stratigraphic time scale

In his book Radio-activity (1904), Rutherford explained that radioactivity results from the spontaneous disintegration of an unstable element into a lighter element, which may decay further until a stable element is finally created. This process of radioactive decay involves the emission of positively charged particles (later to be recognized as helium nuclei) and negatively charged ones (electrons) and in most cases gamma rays (a form of electromagnetic radiation) as well. This interpretation, the so-called disintegration theory, came to provide the basis for the numerical quantification of geologic time.

In 1905 Strutt succeeded in analyzing the helium content of a radium-containing rock and determined its age to be 2 billion years. This was the first successful application of a radiometric technique to the study of Earth materials, and it set the stage for a more complete analysis of geologic time. Although faced with problems of helium loss and therefore not quite accurate results, a major scientific breakthrough had been accomplished. Also in 1905 the American chemist Bertram B. Boltwood, working with the more stable uranium–lead system, calculated the numerical ages of 43 minerals. His results, with a range of 400 million to 2.2 billion years, were an order of magnitude greater than those of the other “quantitative” techniques of the day that made use of heat flow or sedimentation rates to estimate time.

Acceptance of these new ages was slow in coming. Perhaps much to their relief, paleontologists now had sufficient time in which to accommodate faunal change. Researchers in other fields, however, were still conservatively sticking with ages on the order of several hundred million, but were revising their assumed sedimentation rates downward in order to make room for expanded time concepts.

In a brilliant contribution to resolving the controversy over the age of the Earth, Arthur Holmes, a student of Strutt, compared the relative (paleontologically determined) stratigraphic ages of certain specimens with their numerical ages as determined in the laboratory. This 1911 analysis provided for the first time the numerical ages for rocks from several Paleozoic geologic periods as well as from the Precambrian. Carboniferous-aged material was determined to be 340 million years, Devonian-aged material 370 million years, Ordovician (or Silurian) material 430 million years, and Precambrian specimens from 1.025 to 1.64 billion years. As a result of this work, the relative geologic time scale, which had taken nearly 200 years to evolve, could be numerically quantified. No longer did it have merely superpositional significance, it now had absolute temporal significance as well.

Gary Dean Johnson