fluxion

mathematics
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://flykep.top/science/fluxion
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

External Websites

fluxion, in mathematics, the original term for derivative (q.v.), introduced by Isaac Newton in 1665. Newton referred to a varying (flowing) quantity as a fluent and to its instantaneous rate of change as a fluxion. Newton stated that the fundamental problems of the infinitesimal calculus were: (1) given a fluent (that would now be called a function), to find its fluxion (now called a derivative); and, (2) given a fluxion (a function), to find a corresponding fluent (an indefinite integral). Thus, if y = x3, the fluxion of the quantity y equals 3x2 times the fluxion of x; in modern notation, dy/dt = 3x2(dx/dt). Newton’s terminology and notations of fluxions were eventually discarded in favour of the derivatives and differentials that were developed by G.W. Leibniz. See also calculus.