Principal applications

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://flykep.top/science/electromagnet
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Electromagnets have a wide variety of uses. A summary of the principles of operation of some of the important devices in a few major areas of application—communications, research, electrical industry, and magnetic recording—is given below.

Modern telephone systems are based on the reed relay, together with solid-state circuits for complex routing of connections. The telephone receiver is basically an electromagnet with a U-shaped yoke having coils wound on each leg of the U. Passage of the electrical signal through the coils causes magnetic attraction of a soft-iron diaphragm supported a small distance from the ends of the U. The diaphragm is deflected by an amount proportional to the magnitude of the current in the coil and generates sound waves as it moves back and forth. Improvement in magnetic materials has increased the sensitivity of the telephone receiver, but the basic design has remained unchanged.

The loudspeaker performs the same function as the earphone of the telephone receiver but is required to displace a larger volume of air. The diaphragm comprises a flexible cone of large area carrying a coil of fine wire on a small ring located at its apex. The ring lies between the poles of a powerful cylindrically shaped permanent magnet. Audio-frequency current through the coil causes deflection of the diaphragm, as in the earphone. Modern loudspeakers are much more sensitive and efficient than their predecessors because of the improvement in permanent-magnet materials. The higher the flux density in the gap, the greater the sensitivity and the potential for fidelity of reproduction; modern loudspeakers use flux densities of up to one weber per square m. Alloy magnets are usually used.

Magnetic fields supply a powerful research tool without which modern physics could scarcely have grown to its present extent. A major area of application is in the interaction of magnetic fields and charged subatomic particles. A moving particle that carries a charge, such as an electron, can be regarded as an electric current and, like a current-carrying wire, experiences a force in a magnetic field. The direction of the force is perpendicular both to the direction of motion of the particle and to the magnetic field, so that the particle is deflected from its original path. This principle can be used to focus a stream of electrons into a narrow beam and to deflect the beam by creating suitable magnetic fields, either from permanent magnets or from electromagnets. Every television receiver contains just such focusing and deflection systems to scan the face of the television tube with an electron beam.

In scientific applications the same principle is used in the electron microscope, in which the beam of electrons is passed through a series of magnetic “lenses,” just as light is passed through glass lenses in a conventional microscope.

battery. Illustration of battery connected to lightbulb. Power a light bulb with a battery. Battery, Power Supply, Science, Circuit, Currents
Britannica Quiz
Electricity: Short Circuits & Direct Currents

As noted above, the cyclotron makes use of a magnetic field to cause charged particles to execute a circular path. On each traverse of the circle they are accelerated and finally acquire enormous kinetic energy (energy of motion). The cyclotron has been an important tool in nuclear research and in the production of radioactive isotopes.

The same principle may be used to analyze materials in the mass spectrometer. The actual deflection of a moving charged particle in a magnetic field is determined by its charge, mass, and velocity. In a mass spectrometer the material under investigation is in the form of a gas of ionized particles that are accelerated by a fixed electric field. In passing through the magnetic field the particles are deflected by an amount determined by their mass, providing they all carry the same charge. By recording their arrival position at a fixed target, the mass of the particles can be deduced.

The electrical industry is founded on the generation and exploitation of magnetic fields. The electric motor is based on the force generated on a current-carrying conductor; the generator is based on the inverse effect that a conductor moving in a magnetic field has a current induced in it. In general, high-flux densities are required in the magnetic circuits of motors and generators, and this requirement has led to the use of soft iron or silicon–iron electromagnets as the source of magnetic fields in them. With the advent of modern permanent-magnet materials, however, small direct-current motors, in which the field is provided by permanent magnets, are finding wide applications, particularly in the toy industry (see magnet).

The principle of magnetic recording is to induce a permanent magnetization in a material by means of the signal to be recorded. The induced magnetization must be proportional to the amplitude of the signal and must remain in the material when the signal is removed. Thus, a magnetic material is required that has a high permeability, so that it will magnetize readily in a small field; a high remanent magnetization, so that the stored information can be easily “read”; and not too high (but not too low) a coercive force, so that the stored information can be erased without great difficulty.

The most common type of magnetic recorder makes use of a magnetic tape. This passes at constant speed close to a recording head that may consist of a U-shaped magnet yoke with coils wound on each limb. As the current in the coil varies in accordance with the audio-frequency signal to be recorded, a varying magnetization is induced in the tape. To play back the recorded information, the tape is passed through or near a coil so that the magnetic flux from the tape cuts the wires of the coil and induces an audio-frequency current in it. The tape may be erased by passing it through a recording head that carries a high-frequency signal, which has the effect of demagnetizing the tape.

Computer information is in a particularly simple form for magnetic storage because it consists of a chain of electrical pulses of standard amplitude. Material requirements for the tape are not so stringent as for audio recording, the important feature being only that the tape should not demagnetize spontaneously. Many computers have replaced tape storage by discs of magnetic alloy that rotate under the recording head. Information can be stored at a higher density (bits per unit area) than in tape, and access to the information can be made faster by traversing the “read” head in a radial direction across the discs. For information on other related magnetic recording devices, see magnetic recording.