Electric properties of matter

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://flykep.top/science/electricity
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Piezoelectricity

Some solids, notably certain crystals, have permanent electric polarization. Other crystals become electrically polarized when subjected to stress. In electric polarization, the centre of positive charge within an atom, molecule, or crystal lattice element is separated slightly from the centre of negative charge. Piezoelectricity (literally “pressure electricity”) is observed if a stress is applied to a solid, for example, by bending, twisting, or squeezing it. If a thin slice of quartz is compressed between two electrodes, a potential difference occurs; conversely, if the quartz crystal is inserted into an electric field, the resulting stress changes its dimensions. Piezoelectricity is responsible for the great precision of clocks and watches equipped with quartz oscillators. It also is used in electric guitars and various other musical instruments to transform mechanical vibrations into corresponding electric signals, which are then amplified and converted to sound by acoustical speakers.

A crystal under stress exhibits the direct piezoelectric effect; a polarization P, proportional to the stress, is produced. In the converse effect, an applied electric field produces a distortion of the crystal, represented by a strain proportional to the applied field. The basic equations of piezoelectricity are P = d × stress and E = strain/d. The piezoelectric coefficient d (in metres per volt) is approximately 3 × 10−12 for quartz, 5 × −10−11 for ammonium dihydrogen phosphate, and 3 × 10−10 for lead zirconate titanate.

For an elastic body, the stress is proportional to the strain—i.e., stress = Ye × strain. The proportionality constant is the coefficient of elasticity Ye, also called Young’s modulus for the English physicist Thomas Young. Using that relation, the induced polarization can be written as P = dYe × strain, while the stress required to keep the strain constant when the crystal is in an electric field is stress = −dYeE. The strain in a deformed elastic body is the fractional change in the dimensions of the body in various directions; the stress is the internal pressure along the various directions. Both are second-rank tensors, and, since electric field and polarization are vectors, the detailed treatment of piezoelectricity is complex. The equations above are oversimplified but can be used for crystals in certain orientations.

The polarization effects responsible for piezoelectricity arise from small displacements of ions in the crystal lattice. Such an effect is not found in crystals with a centre of symmetry. The direct effect can be quite strong; a potential V = Yedδ/ε0K is generated in a crystal compressed by an amount δ, where K is the dielectric constant. If lead zirconate titanate is placed between two electrodes and a pressure causing a reduction of only 1/20th of one millimetre is applied, a 100,000-volt potential is produced. The direct effect is used, for example, to generate an electric spark with which to ignite natural gas in a heating unit or an outdoor cooking grill.

In practice, the converse piezoelectric effect, which occurs when an external electric field changes the dimensions of a crystal, is small because the electric fields that can be generated in a laboratory are minuscule compared to those existing naturally in matter. A static electric field of 106 volts per metre produces a change of only about 0.001 millimetre in the length of a one-centimetre quartz crystal. The effect can be enhanced by the application of an alternating electric field of the same frequency as the natural mechanical vibration frequency of the crystal. Many of the crystals have a quality factor Q of several hundred, and, in the case of quartz, the value can be 106. The result is a piezoelectric coefficient a factor Q higher than for a static electric field. The very large Q of quartz is exploited in electronic oscillator circuits to make remarkably accurate timepieces. The mechanical vibrations that can be induced in a crystal by the converse piezoelectric effect are also used to generate ultrasound, which is sound with a frequency far higher than frequencies audible to the human ear—above 20 kilohertz. The reflected sound is detectable by the direct effect. Such effects form the basis of ultrasound systems used to fathom the depths of lakes and waterways and to locate fish. Ultrasound has found application in medical imaging (e.g., fetal monitoring and the detection of abnormalities such as prostate tumours). The use of ultrasound makes it possible to produce detailed pictures of organs and other internal structures because of the variation in the reflection of sound from various body tissues. Thin films of polymeric plastic with a piezoelectric coefficient of about 10−11 metres per volt have been developed and have numerous applications as pressure transducers.

Electro-optic phenomena

The index of refraction n of a transparent substance is related to its electric polarizability and is given by n2 = 1 + χe0. As discussed earlier, χe is the electric susceptibility of a medium, and the equation P = χeE relates the polarization of the medium to the applied electric field. For most matter, χe is not a constant independent of the value of the electric field, but rather depends to a small degree on the value of the field. Thus, the index of refraction can be changed by applying an external electric field to a medium. In liquids, glasses, and crystals that have a centre of symmetry, the change is usually very small. Called the Kerr effect (for its discoverer, the Scottish physicist John Kerr), it is proportional to the square of the applied electric field. In noncentrosymmetric crystals, the change in the index of refraction n is generally much greater; it depends linearly on the applied electric field and is known as the Pockels effect (after the German physicist F. R. Pockels).

A varying electric field applied to a medium will modulate its index of refraction. This change in the index of refraction can be used to modulate light and make it carry information. A crystal widely used for its Pockels effect is potassium dihydrogen phosphate, which has good optical properties and low dielectric losses even at microwave frequencies.

An unusually large Kerr effect is found in nitrobenzene, a liquid with highly “acentric” molecules that have large electric dipole moments. Applying an external electric field partially aligns the otherwise randomly oriented dipole moments and greatly enhances the influence of the field on the index of refraction. The length of the path of light through nitrobenzene can be adjusted easily because it is a liquid.

Thermoelectricity

When two metals are placed in electric contact, electrons flow out of the one in which the electrons are less bound and into the other. The binding is measured by the location of the so-called Fermi level of electrons in the metal; the higher the level, the lower is the binding. The Fermi level represents the demarcation in energy within the conduction band of a metal between the energy levels occupied by electrons and those that are unoccupied. The energy of an electron at the Fermi level is −W relative to a free electron outside the metal. The flow of electrons between the two conductors in contact continues until the change in electrostatic potential brings the Fermi levels of the two metals (W1 and W2) to the same value. This electrostatic potential is called the contact potential ϕ12 and is given by eϕ12 = W1W2, where e is 1.6 × 10−19 coulomb.

If a closed circuit is made of two different metals, there will be no net electromotive force in the circuit because the two contact potentials oppose each other and no current will flow. There will be a current if the temperature of one of the junctions is raised with respect to that of the second. There is a net electromotive force generated in the circuit, as it is unlikely that the two metals will have Fermi levels with identical temperature dependence. To maintain the temperature difference, heat must enter the hot junction and leave the cold junction; this is consistent with the fact that the current can be used to do mechanical work. The generation of a thermal electromotive force at a junction is called the Seebeck effect (after the Estonian-born German physicist Thomas Johann Seebeck). The electromotive force is approximately linear with the temperature difference between two junctions of dissimilar metals, which are called a thermocouple. For a thermocouple made of iron and constantan (an alloy of 60 percent copper and 40 percent nickel), the electromotive force is about five millivolts when the cold junction is at 0° C and the hot junction at 100° C. One of the principal applications of the Seebeck effect is the measurement of temperature. The chemical properties of the medium, the temperature of which is measured, and the sensitivity required dictate the choice of components of a thermocouple.

The absorption or release of heat at a junction in which there is an electric current is called the Peltier effect (after the French physicist Jean-Charles Peltier). Both the Seebeck and Peltier effects also occur at the junction between a metal and a semiconductor and at the junction between two semiconductors. The development of semiconductor thermocouples (e.g., those consisting of n-type and p-type bismuth telluride) has made the use of the Peltier effect practical for refrigeration. Sets of such thermocouples are connected electrically in series and thermally in parallel. When an electric current is made to flow, a temperature difference, which depends on the current, develops between the two junctions. If the temperature of the hotter junction is kept low by removing heat, the second junction can be tens of degrees colder and act as a refrigerator. Peltier refrigerators are used to cool small bodies; they are compact, have no moving mechanical parts, and can be regulated to maintain precise and stable temperatures. They are employed in numerous applications, as, for example, to keep the temperature of a sample constant while it is on a microscope stage.

Thermionic emission

A metal contains mobile electrons in a partially filled band of energy levels—i.e., the conduction band. These electrons, though mobile within the metal, are rather tightly bound to it. The energy that is required to release a mobile electron from the metal varies from about 1.5 to 6 electron volts, depending on the metal. In thermionic emission, some of the electrons acquire enough energy from thermal collisions to escape from the metal. The number of electrons emitted and therefore the thermionic emission current depend critically on temperature.

In a metal the conduction-band levels are filled up to the Fermi level, which lies at an energy −W relative to a free electron outside the metal. The work function of the metal, which is the energy required to remove an electron from the metal, is therefore equal to W. At a temperature of 1,000 K only a small fraction of the mobile electrons have sufficient energy to escape. The electrons that can escape are moving so fast in the metal and have such high kinetic energies that they are unaffected by the periodic potential caused by atoms of the metallic lattice. They behave like electrons trapped in a region of constant potential. Because of this, when the rate at which electrons escape from the metal is calculated, the detailed structure of the metal has little influence on the final result. A formula known as Richardson’s law (first proposed by the English physicist Owen W. Richardson) is roughly valid for all metals. It is usually expressed in terms of the emission current density (J) as Equation.in amperes per square metre. The Boltzmann constant k has the value 8.62 × 10−5 electron volts per kelvin, and temperature T is in kelvins. The constant A is 1.2 × 106 ampere degree squared per square metre, and varies slightly for different metals. For tungsten, which has a work function W of 4.5 electron volts, the value of A is 7 × 105 amperes per square metre kelvin squared and the current density at T equaling 2,400 K is 0.14 ampere per square centimetre. J rises rapidly with temperature. If T is increased to 2,600 K, J rises to 0.9 ampere per square centimetre. Tungsten does not emit appreciably at 2,000 K or below (less than 0.05 milliampere per square centimetre) because its work function of 4.5 electron volts is large compared to the thermal energy kT, which is only 0.16 electron volt. At 1,000 K, a mixture of barium and strontium oxides has a work function of approximately 1.3 electron volts and is a reasonably good conductor. Currents of several amperes per square centimetre can be drawn from such oxide cathodes, but in practice the current density is generally less than 0.2 ampere per square centimetre. The oxide layer deteriorates rapidly when higher current densities are drawn.

Secondary electron emission

If electrons with energies of 10 to 1,000 electron volts strike a metal surface in a vacuum, their energy is lost in collisions in a region near the surface, and most of it is transferred to other electrons in the metal. Because this occurs near the surface, some of these electrons may be ejected from the metal and form a secondary emission current. The ratio of secondary electrons to incident electrons is known as the secondary emission coefficient. For low-incident energies (below about one electron volt), the primary electrons tend to be reflected and the secondary emission coefficient is near unity. With increasing energy, the coefficient at first falls and then at about 10 electron volts begins to rise again, usually reaching a peak of value between 2 and 4 at energies of a few hundred electron volts. At higher energies, the primary electrons penetrate so far below the surface before losing energy that the excited electrons have little chance of reaching the surface and escaping. The secondary emission coefficients fall and, when the electrons have energies exceeding 20 kiloelectron volts, are usually well below unity. Secondary emission also can occur in insulators. Because many insulators have rather high secondary emission coefficients, it is often useful when high secondary emission yields are required to coat a metal electrode with a thin insulator layer a few atoms thick.