Cell death
- Key People:
- Elisabeth Kübler-Ross
- Related Topics:
- rigor mortis
- decomposition
- cell death
- coma dépassé
- clinical death
News •
A vast amount of work has been devoted since the late 19th century to discovering how cells multiply. The study of how and why they die is a relatively recent concern: a rubric entitled “cell death” only appeared in the Index Medicus, an index to medical literature, in 1979.
What most textbooks of pathology describe as cell death is coagulative necrosis. This is an abnormal morphological appearance, detected in tissue examined under the microscope. The changes, which affect aggregates of adjacent cells or functionally related cohorts of cells, are seen in a variety of contexts produced by accident, injury, or disease. Among the environmental perturbations that may cause cell necrosis are oxygen deprivation (anoxia), hyperthermia, immunological attack, and exposure to various toxins that inhibit crucial intracellular metabolic processes. Coagulative necrosis is the classical form of cell change seen when tissues autolyze (digest themselves) in vitro.
But cells may die by design as well as by accident. Research in developmental pathology has stressed the biological importance of this other kind of cell death, which has been referred to as programmed cell death. In vertebrates it has been called apoptosis and in invertebrates, cell deletion. Programmed cell death plays an important role in vertebrate ontogeny (embryological development) and teratogenesis (the production of malformations), as well as in the spectacular metamorphoses that affect tadpoles or caterpillars. Such programmed events are essential if the organism as a whole is to develop its normal final form. Waves of genetically driven cell death are critical to the proper modeling of organs and systems. The inflections (curvatures) of the developing mammalian brain and spinal cord, for instance, or the achievement of a proper numerical balance between functionally related cell groups, cannot be understood without an appreciation of how the death of some (or many) cells is necessary for others to reach maturity. Localized cell death, occurring at precise moments during normal ontogeny, explains phenomena as varied as the fashioning of the digits or the involution of phylogenetic vestiges. Several congenital abnormalities can be attributed to disorders of programmed cell death. Cell death occurs spontaneously in normally involuting tissues such as the thymus. It can be initiated or inhibited by a variety of environmental stimuli, both physiological and pathological. Cell death even occurs in some of the cells of untreated malignant tumours, and it is seen during tumour regression induced by X rays or radiomimetic cytotoxic agents. Programmed cell death may also play a part in the process of aging, cells being designed to die after a certain number of mitotic divisions. Groups of cells responsible for the colour of human hair, for instance, may cease to function years before the hair itself loses the capacity to grow: the result is the “uncoloured” white hair of old age.
The two types of cell death—imposed from without or programmed from within—have different morphological features. Furthermore, different intracellular mechanisms have been incriminated in their production.
Necrosis is characterized by early swelling of the cytoplasm and of the mitochondria (energy-releasing organelles) within it. Later changes include the appearance of localized densities, possibly related to calcium deposition, in the matrix (ground substance) of the mitochondria. This is followed by the dissolution of other cytoplasmic organelles and the separation of affected cells from their neighbours through shearing of intercellular junctions. Nuclear alterations occur late and are relatively unremarkable. The nucleus swells, becomes darker (pyknosis), and ruptures (karyolysis) at about the same time as does the plasma membrane, the outer envelope of the cell. The basic mechanism of necrosis is thought to be a loss of control over cell volume, related to changes in the permeability of the cell membrane. These changes form the basis of several of the tests used to diagnose a necrotic cell in the laboratory. The affected membrane rapidly loses its ion-pumping capacity, and there are dramatic increases in the intracellular concentrations of sodium and calcium ions. This is followed by osmotic shock and the development of intracellular acidosis. The early injury to the mitochondria has profound repercussions on intracellular oxidative metabolism. The point of no return is reached with irreversible damage to mitochondrial structure and function. Later still, the lysosomes (membranous bags of hydrolytic enzymes found in most cells) rupture, releasing their acid enzymes into the cytoplasm of the cell. All this produces an ionic milieu unsuitable to the survival of the nucleus. Loss of the cell’s capacity to synthesize protein is the ultimate proof that it is functionally dead.
Programmed cell death usually affects scattered single cells. Early ultrastructural features are the disintegration of cell junctions and condensations of the cytoplasm. The cells shrivel up instead of swelling. Lumps of chromatin aggregate at the surface of the nucleus. The nuclear membrane develops folds, and the nucleus splits into a number of membrane-bound, ultrastructurally well-preserved fragments, which are shed and promptly taken up by specialized scavenger cells or even by ordinary cells in the neighbourhood. Energy-producing mitochondria are preserved until quite late. The nuclear changes seem to be energy-dependent; they may reflect the fact that genes in the nucleus are beginning to express themselves in new ways, in response to unknown stimuli. One of these responses seems to be the activation of endogenous endonucleases, enzymes in the cell nucleus that “suicidally” disrupt its cardinal functions.
Time alone will tell whether the distinctions between the two types of cell death are valid or spurious, and whether the concept of apoptosis will gain wide acceptance. Reality will probably turn out to be a great deal more complex. Meanwhile, one should retain, without overemphasis, the twin visions of cell death—one in which death approaches the cell from the outside and the other in which death starts from within the living core of the cell itself.
Clinical death
At the opposite end of the spectrum from cell death lies the death of a human being. It is obvious that the problems of defining human death cannot be resolved in purely biological terms, divorced from all ethical or cultural considerations. This is because there will be repercussions (burial, mourning, inheritance, etc.) from any decisions made, and because the decisions themselves will have to be socially acceptable in a way that does not apply to the fate of cells in tissue culture.
Unless death is defined at least in outline, the decision that a person is “dead” cannot be verified by any amount of scientific investigation. Technical data can never answer purely conceptual questions. Earlier in this article it was suggested that the death of the brain was the necessary and sufficient condition for the death of the individual, but the word death was not given much content beyond the very general definition of “irreversible loss of function.” If one seeks to marry conceptions of death prevalent in the oldest cultures with the most up-to-date observations from intensive care units, one might think of human death as the irreversible loss of the capacity for consciousness combined with the irreversible loss of the capacity to breathe. The anatomical basis for such a concept of human death resides in the loss of brain-stem function.
Functions of the brain stem
The brain stem is the area at the base of the brain that includes the mesencephalon (midbrain), the pons, and the medulla. It contains the respiratory and vasomotor centres, which are responsible, respectively, for breathing and the maintenance of blood pressure. Most importantly, it also contains the ascending reticular activating system, which plays a crucial role in maintaining alertness (i.e., in generating the capacity for consciousness); small, strategically situated lesions in the medial tegmental portions of the midbrain and rostral pons cause permanent coma. All of the motor outputs from the cerebral hemispheres—for example, those that mediate movement or speech—are routed through the brain stem, as are the sympathetic and parasympathetic efferent nerve fibres responsible for the integrated functioning of the organism as a whole. Most sensory inputs also travel through the brain stem. This part of the brain is, in fact, so tightly packed with important structures that small lesions there often have devastating effects. By testing various brain-stem reflexes, moreover, the functions of the brain stem can be assessed clinically with an ease, thoroughness, and degree of detail not possible for any other part of the central nervous system.
It must be stressed that the capacity for consciousness (an upper brain-stem function) is not the same as the content of consciousness (a function of the cerebral hemispheres); it is, rather, an essential precondition of the latter. If there is no functioning brain stem, there can be no meaningful or integrated activity of the cerebral hemispheres, no cognitive or affective life, no thoughts or feelings, no social interaction with the environment, nothing that might legitimize adding the adjective sapiens (“wise”) to the noun Homo (“man”). The “capacity for consciousness” is perhaps the nearest one can get to giving a biological flavour to the notion of “soul.”
The capacity to breathe is also a brain-stem function, and apnea (respiratory paralysis) is a crucial manifestation of a nonfunctioning lower brain stem. Alone, of course, it does not imply death; patients with bulbar poliomyelitis, who may have apnea of brain-stem origin, are clearly not dead. Although irreversible apnea has no strictly philosophical dimension, it is useful to include it in any concept of death. This is because of its obvious relation to cardiac function—if spontaneous breathing is lost the heart cannot long continue to function—and perhaps because of its cultural associations with the “breath of life.” These aspects are addressed in the later discussion of how death has been envisaged in various cultures.