antibody

biochemistry
print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://flykep.top/science/antibody
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: Ig, immunoglobulin

antibody, a protective protein produced by the immune system in response to the presence of a foreign substance, called an antigen. Antibodies recognize and latch onto antigens in order to remove them from the body. A wide range of substances are regarded by the body as antigens, including disease-causing organisms and toxic materials such as insect venom.

How antibodies work

When an alien substance enters the body, the immune system is able to recognize it as foreign because molecules on the surface of the antigen differ from those found in the body. To eliminate the invader, the immune system calls on a number of mechanisms, including one of the most important—antibody production. Antibodies are produced by specialized white blood cells called B lymphocytes (or B cells). When an antigen binds to the B-cell surface, it stimulates the B cell to divide and mature into a group of identical cells called a clone. The mature B cells, called plasma cells, secrete millions of antibodies into the bloodstream and lymphatic system.

As antibodies circulate, they attack and neutralize antigens that are identical to the one that triggered the immune response. Antibodies attack antigens by binding to them. The binding of an antibody to a toxin, for example, can neutralize the poison simply by changing its chemical composition; such antibodies are called antitoxins. By attaching themselves to some invading microbes, other antibodies can render such microorganisms immobile or prevent them from penetrating body cells. In other cases the antibody-coated antigen is subject to a chemical chain reaction with complement, which is a series of proteins found in the blood. The complement reaction either can trigger the lysis (bursting) of the invading microbe or can attract microbe-killing scavenger cells that ingest, or phagocytose, the invader. Once begun, antibody production continues for several days until all antigen molecules are removed. Antibodies remain in circulation for several months, providing extended immunity against that particular antigen.

Antibodies and B cells

B cells and antibodies together provide one of the most important functions of immunity, which is to recognize an invading antigen and to produce a tremendous number of protective proteins that scour the body to remove all traces of that antigen. Collectively B cells recognize an almost limitless number of antigens; however, individually each B cell can bind to only one type of antigen. B cells distinguish antigens through proteins, called antigen receptors, found on their surfaces. An antigen receptor is basically an antibody protein that is not secreted but is anchored to the B-cell membrane.

All antigen receptors found on a particular B cell are identical, but receptors located on other B cells differ. Although their general structure is similar, the variation lies in the area that interacts with the antigen—the antigen-binding, or antibody-combining, site. This structural variation among antigen-binding sites allows different B cells to recognize different antigens. The antigen receptor does not actually recognize the entire antigen; instead it binds to only a portion of the antigen’s surface, an area called the antigenic determinant or epitope. Binding between the receptor and epitope occurs only if their structures are complementary. If they are, epitope and receptor fit together like two pieces of a puzzle, an event that is necessary to activate B-cell production of antibodies.

3d illustration human heart. Adult Anatomy Aorta Black Blood Vessel Cardiovascular System Coronary Artery Coronary Sinus Front View Glowing Human Artery Human Heart Human Internal Organ Medical X-ray Myocardium
Britannica Quiz
Medical Terms and Pioneers Quiz