Silurian life

print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://flykep.top/science/Silurian-Period
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: Gotlandian Period

Marine benthic (bottom-dwelling) invertebrates of the Silurian Period belonged to persistent assemblages, or communities, that commonly conformed to ecological zonation. One way in which zonation expresses itself is through bathymetric gradients (changes in light, temperature, salinity, and pressure with depth).Paleoecologists studying in Wales, Norway, Estonia, Siberia, South China, and North America have used very similar models to explain the geographic distribution of Silurian communities. Some of these communities were adapted to life under conditions of stronger sunlight and more vigorous wave energy in shallow nearshore waters; others were restricted to darker, quieter environments in deeper offshore waters.

Pentamerid communities

The Pentamerus community was an early Silurian community dominated by the large-shelled brachiopod (lamp shell) of the species Pentamerus oblongus. The community often included 5 to 20 associated species, although enormous populations of only one species sometimes are found preserved in growth position. The Pentamerus community and its slightly older and younger equivalents dominated by similar pentamerid species in the genera Virgiana, Borealis, Pentameroides, and Kirkidium all occupied a bathymetric zone of medium water depth. These pentamerid communities are known to have lived in sunlit waters because they are associated with robust, calcareous green algae. The waters were not too shallow, however, because pentamerid brachiopods lost their pedicle (the fleshy appendage that tethers the shell to the seafloor) as they matured, and thus unsecured populations were vulnerable to disruption by steady wave activity. The pentamerid communities thrived within depths of perhaps 30 to 60 metres (100 to 200 feet). This was below the level of normal (fair weather) wave activity but still in reach of storm waves. At their lower depth limit, the pentamerid communities were out of reach of all but the most intense and infrequent storms.

In regions such as Wales that are characterized by clastic rock deposition, an onshore-offshore array of five brachiopod-dominated communities may be mapped in belts running parallel to the ancient shoreline. Listed in order from shallowest to deepest position, they are the Lingula, Eocoelia, Pentamerus, Stricklandia, and Clorinda communities. Below a relatively steep gradient, the centre of the Welsh Basin was filled by graptolitic shales.

Other areas, such as the Laurentian and Siberian platforms, characterized by carbonate deposition, typically developed a continuum of coral-stromatoporoid, Pentamerus, and Stricklandia communities. (Stromatoporoids are large colonial marine organisms similar to hydrozoans.) Clorinda communities were rare in this setting. Stricklandia communities sometimes included smaller, less-robust individuals of calcareous green algae, indicating a slightly deeper-water environment than that occupied by the Pentamerus community. Coral-stromatoporoid communities, which sometimes formed reef mounds, preferred wave-agitated waters shallower than 30 metres (100 feet). Much like the reef communities of today, they could not tolerate the more excessive rates of sedimentation typical of clastic settings. Bathymetric relief on carbonate platforms was very gentle; the full spectrum of available communities was likely often expressed over a gradient hundreds of kilometres long. In contrast, the bathymetric gradient on the Welsh shelf was no more than a few tens of kilometres long. Like the Pentamerus community, the other early Silurian communities have ecological equivalents that took their place in later Silurian time.

Reef mounds and coral biostromes

Reef mounds (bioherms) provided the Silurian seafloor with an organically constructed microtopography featuring zonations of segregated brachiopods, gastropods (class of mollusk containing present-day snails and slugs), crinoids (class of echinoderm containing present-day sea lilies and feather stars), and trilobites. The Thornton Reef Complex outside Chicago is an example of a well-zoned Wenlock complex more than 1 km (0.6 mile) in diameter. Others are well known from the Silurian of Manitoulin Island (Ontario, Can.), northern Greenland, Shropshire (Eng.), Gotland (Swed.), Estonia, the central and southern Urals of Russia, and Siberia. The most spectacular complex is a barrier reef 350 km (215 miles) long of late Llandovery–early Wenlock age in northern Greenland.

Reefs of all Silurian ages are known, but their development probably reached a climax during Wenlock time. Several thousand bioherms have been recognized from outcrop and subsurface evidence across a tract of 800,000 square km (309,000 square miles) surrounding the Great Lakes region of North America. Quite distinct from the Silurian reef mounds are concentrations of tabulate corals and lamellar stromatoporoids that lived in shallow water on a level seafloor. The resulting accumulations are flat-layered (biostromal) in design. The tabulate corals are often dominated by species belonging to the genera Favosites (honeycomb corals) and Halysites (chain corals) and by tabulate corals of the genera Syringopora and Heliolites. The associated stromatoporoids are essentially armoured sponges, the lamellar construction of which commonly lends them a pancake shape.

The creation of global biozones of different organisms is also evident in Silurian sedimentary deposits. The rich benthic faunas just described were tropical to subtropical in distribution. The southern temperate zone, sometimes called the Malvinokaffric Realm, is represented by the low-diversity Clarkeia (brachiopod) fauna from Gondwanan Africa and South America. A northern temperate zone is represented by the low-diversity Tuvaella (brachiopod) fauna mostly restricted to Mongolia and adjacent parts of Siberia. The Tuvaella fauna also has been discovered in northwestern China, which apparently represents a more southern extension, since it straddled the paleoequator during the Silurian Period.