George Gamow

American physicist
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://flykep.top/biography/George-Gamow
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: Georgy Antonovich Gamov
Quick Facts
Original Russian:
Georgy Antonovich Gamov
Born:
March 4, 1904, Odessa, Russian Empire [now in Ukraine]
Died:
August 19, 1968, Boulder, Colorado, U.S. (aged 64)

George Gamow (born March 4, 1904, Odessa, Russian Empire [now in Ukraine]—died August 19, 1968, Boulder, Colorado, U.S.) was a Russian-born American nuclear physicist and cosmologist who was one of the foremost advocates of the big-bang theory, according to which the universe was formed in a colossal explosion that took place billions of years ago. In addition, his work on deoxyribonucleic acid (DNA) made a basic contribution to modern genetic theory.

Gamow attended Leningrad (now St. Petersburg) University, where he studied briefly with A.A. Friedmann, a mathematician and cosmologist who suggested that the universe should be expanding. At that time Gamow did not pursue Friedmann’s suggestion, preferring instead to delve into quantum theory. After graduating in 1928, he traveled to Göttingen, where he developed his quantum theory of radioactivity, the first successful explanation of the behaviour of radioactive elements, some of which decay in seconds while others decay over thousands of years.

His achievement earned him a fellowship at the Copenhagen Institute of Theoretical Physics (1928–29), where he continued his investigations in theoretical nuclear physics. There he proposed his “liquid drop” model of atomic nuclei, which served as the basis for the modern theories of nuclear fission and fusion. He also collaborated with F. Houtermans and R. Atkinson in developing a theory of the rates of thermonuclear reactions inside stars.

Italian-born physicist Dr. Enrico Fermi draws a diagram at a blackboard with mathematical equations. circa 1950.
Britannica Quiz
Physics and Natural Law

In 1934, after emigrating from the Soviet Union, Gamow was appointed professor of physics at George Washington University in Washington, D.C. There he collaborated with Edward Teller in developing a theory of beta decay (1936), a nuclear decay process in which an electron is emitted.

Soon after, Gamow resumed his study of the relations between small-scale nuclear processes and cosmology. He used his knowledge of nuclear reactions to interpret stellar evolution, collaborating with Teller on a theory of the internal structures of red giant stars (1942). From his work on stellar evolution, Gamow postulated that the Sun’s energy results from thermonuclear processes.

Gamow and Teller were both proponents of the expanding-universe theory that had been advanced by Friedmann, Edwin Hubble, and Georges LeMaître. Gamow, however, modified the theory, and he, Ralph Alpher, and Hans Bethe published this theory in a paper called “The Origin of Chemical Elements” (1948). This paper, attempting to explain the distribution of chemical elements throughout the universe, posits a primeval thermonuclear explosion, the big bang that began the universe. According to the theory, after the big bang, atomic nuclei were built up by the successive capture of neutrons by the initially formed pairs and triplets. (The paper is also known as the αβγ [alpha-beta-gamma] paper in a play on words on the first three letters of the Greek alphabet. Gamow added Bethe, who had done no work on the paper, as a coauthor to make the joke.)

In 1954 Gamow’s scientific interests grew to encompass biochemistry. He proposed the concept of a genetic code and maintained that the code was determined by the order of recurring triplets of nucleotides, the basic components of DNA. His proposal was vindicated during the rapid development of genetic theory that followed.

Are you a student?
Get a special academic rate on Britannica Premium.

Gamow held the position of professor of physics at the University of Colorado, Boulder, from 1956 until his death. He is perhaps best known for his popular writings, designed to introduce to the nonspecialist such difficult subjects as relativity and cosmology. His first such work, Mr. Tompkins in Wonderland (1939), gave rise to the multivolume Mr. Tompkins series (1939–67). Among his other writings are One, Two, Three…Infinity (1947), The Creation of the Universe (1952; rev. ed., 1961), A Planet Called Earth (1963), and A Star Called the Sun (1964).

This article was most recently revised and updated by Encyclopaedia Britannica.